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The background



Getting something from nothing?

In Rudolph Erich Raspe's tale, Baron
Munchausen had, in one of his many
adventurous travels, fallen to the bottom
of a deep lake and just as he was to
succumb to his fate he thought to pull
himself up by his own BOOTSTRAP.

The original version of the tale is in
german, where Munchausen actually
draws himself up by the hair, not the
bootstraps. The figure on the left refers to
german version of the story.

Efron and LePage gave the method they
developed the name Bootstrap in honour
of the unbelievable stories that the Baron
told of his travels.




i The general problem

= "We have a set of real-va
... Xn independently samp

ued observations Xxi,
ed from an

unknown probability distri

oution F. We are

interested in estimating some parameter © by
using the information in the sample data with
an estimator ®-hat = t(x). Some measure of

the estimate’s accuracy is
estimate itself; we want a

as important as the
standard error of

®-hat and, even better a confidence interval

on the true value 6.”
= Efro

n and LePage (1992)



i The solution: Bootstrap

= Generate large numbers of “bootstrap” data
sets, x1, x2, X3, ... Xxb, from the original data.

= The observations in each data set is generated by
a random draw, with replacement, from the
observations in the original data set.

=« Each data set has the same number of observation
(n) as the original data set.

= Refit the model to each bootstrap data set.

=« Compute the statistics of interest (probability
profile, standard deviations, confidence
intervals) from the results for each model fit.



i Bootstrap: Why?

= When the sample contains all the available
information about the population one can
act as if the sample is really the population
for the purpose of estimating the sampling
distribution.

= Sampling with replacement is consistent
with sampling a population that is
effectively infinite - treat the sample as the
total population.

» Elegant, powerful and easy :-)



i Bootstrap: When?

= When sample cannot be represented by a
distribution, especially if the underlying
population distribution is not known.

s If one knows the distribution there is little
advantage to using bootstrap.

= There is however no harm in bootstrapping
such data sets!



.

Bootstrapping the residuals



i Resampling residuals

= In a time series model one must maintain the
time order of the data.

= Thus, resample the residuals with replacement
from the optimum fit.

= The randomly sampled residuals are applied to
the optimum fitted values to generate new
pootstrap samples.

= Process repeated n-times to obtain a probability
profile of the value of interest.

= Use a catch curve analysis as an illustration
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i Original data set and statistics

In c@a

Data set: c@a of one
cohort

Analysis: Slope estimate
of fully recruited fish

Z = -Slope, if no change
in mortality between year

Task: Obtain some
information about the
confidence interval of the
Z using bootstrapping
techniques.



ﬂ The residuals to resample

Z = 0.86




One bootstrap sample

Bootstrap value = Predicted value + random residual value



i More formally stated ...

The * represents a random draw of the
residuals from the set available



i Original and 1 bootstrap sample

¢ Original Z = 0.86
©c1boot Z=0.91
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‘n bootstrap samples




| 5000 bootstrap samples: Distribution

Bootstrap
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i Bootstrap confidence intervals

= With b bootstrap estimates of the
parameter of interest Ob:

=« Obtain confidence interval simply by finding
the percentile bootstrap estimates that
contain the desired confidence.

= More formally stated: An estimate of the
100(1-a)% CI around the sample estimate of
IS obtained from the two bootstrap estimates
that contain the central 100(1-a)% of all b
bootstrap estimates.
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=1 Parametric confidence interval

« If the parameter estimated is expected to follow a
normal distribution, the C.I. may be obtained from the

usual:
| CI —_ @ i tn-l,a/ZSe®
=« Where:

®: sample parameter estimate
t102: Student t-distribution value for n-1 degrees of freedom
n: b, number of bootstrap replicates

Since b is generally high, could just use the 1.96 if obtaining
95% confidence interval.



i How many bootstraps?

= This was more of an issue prior to the
common availability of powerful
computers.

= However, in complicated models with
many parameters issue is still valid and
the number of bootstraps needed is a
question of efficiency.

= Can simply test the sensitivity of the
parameters in question by running
different number of runs ------- >



=11 95% CI of Z and bootstrap numbers
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In this simple case do not need much more than around 200 bootstraps to get CI



71| A little hands on experience on bootstrapping

= We have our known state of affairs (xGenerator) where
we can set the Zay.

= Set constant Fy and My, constant fishing pattern with time, but a
pla;teaiu (=1.00) above some age (set the sr to a very high
value).

= Set the CV for the catches to a certain value, same value for all
age group.

= Pick a year class, calculate slope of catch curve for the age
classes that are fully recruited to the fisheries.

= Run 1000 bootstrap to estimate the confidence interval of the
estimated slope.

= Repeat the process but change the CV of the measurements of
catch at age

= T0 ease and speed up the exercise, copy the xBootstrapping101.xls
into your BuildingBlock folder (where you have your simulator).

= I suggest Afull=6, Fy=0.6 and My=0.2 ﬂust because that’s how the
graphical displays were set up for, but this is not necessary).



True Z2=0.8

7l Different CV in catches: 1000 bootstraps
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Bootstrapping in stock production
models



i Stock production model (revision)

= Have two equations:

B
B, =B, +rmB (I-—>)-Y
B y

max

VN

U,=4B,

» Data: Yy, Uy (CPUEy)
« Parameters: g, r, B.», and Bo
= Assumptions: ................

= Note: often assumed Bo = B..., or some ratio
there of



i Objective function I (revision)

= Lognhormal error model:
U ,=qgB e

= Objective function:
= SSQ Z(any—lnl?y)2 :Z(any—ln[q(By)])2
or ’ ’

. LL —g(ln27z+21n6'+1)



i Objective function II (revision)

= Note: Full objective function

Z(any —lnl?y)2 =Z(any —ln[q(By)])2

y y

_ . i,
=Y {ln U,—In q(By1 +rB {1 — By_l } — Yylj

= Estimate g, r, Bmax and Bo by minimizing
the residuals




i Example: Stock production model
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0.2 -

0.0

Data set: West Nordic
Greenland halibut

Analysis: Simple stock
production model.

Parameters: g, r,
Bmax, Bo

Task: Obtain some
information about the
confidence interval



i Example: Residuals of the fit
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Bootstrap sampling

y
U y *selected at random from 1:n

OPTIMUM MODEL RESAMPLING W. REPLACEMENT BOOTSTRAP SAMPLE




i Objective function — 1 bootstrap

= Note: The star indicates this is a bootstrap

sample

Z(an; —any)z =Z(anj —ln[q*(By)])2

y y

—Z{anjln
y

q* (Byl + r*By_1 {1 —

= Estimate the parameters g, r, Bmax and Bo for the

B,
B

-Y

y—1

bootstrap sample by minimizing the objective

function.
= Store the parameters

)




-i Original vs. Bootstrap sample n
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1000 bootstrap runs

CPUE = qB

80% and 95% confidence interval
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i Reference values (revision)

= The reference values for stock production
model are derived from parameters and

alre. B
B — max

MSY
2

r
E —_ _ erax
MSY 5 q MSY = 1

r
2 2 MSY: Maximum sustainable yield
q Emsy: Effort at MSY
Fmsy: Max. sustainable fishing mortality



i Current stock status relative to Bwsy?
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Note: The estimates of Bwmsy
and B2oo1 are correlated.

May be better to take the ratio 0

of B2oo1/Bmsy from each run.
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i p(B2001<BMSY) = 0.97
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Bootstrap in age based models
“A visual tour” using xModel



i Follow these steps xModel

= Start from the optimum fit
= Store the estimates of c@a, ul@a & u2@a
C U Surveyl U Survey2

a,y

m Store the estimates of the ratio of obs/pre

Ca ) USurveyl " USurveyZ )
Y a,y a,y
C., U,, U.,

= Random bootstrap sampling is already set up

= Copy the bootstrap sample into the observation
area of the model. Run Solver.

Store in Excel speak is equivalent to copy-paste-special-value within the same area




1. Parameters

Population m
Observation

2. Selection pattern

3. Fishing mortality

Natural mortality

4a. Population numbers

5. Predicted catch

4b. Nay at survey 1 time

4c. Nay at survey 2 time

6a. Predicted survey 1
indices

6b. Predicted survey 2
indices

Observed catch at age

Observed survey 1 indices

Observed survey 2 indices

el

Measurements

Parameters

residuals

Bootstrap Ully residuals
from the op@imum fit -
ve

Bootstrap URy sample

Bootstrap Uaff residuals
from the optit

Bootstrap Ualj sample

Area 2 Area 1

Area 3

Bootstrap in xModel

0) Obtain the optimum fit. Store
the predicted catch at age values
and the residuals.

1) In each bootstrap run a new
bootstrap sample (area 3) is drawn
randomly from the residuals (area 2)
and applied to the optimum

catch at age (area 1)

2) The bootstrap sample (are 3) is
pasted into the data area where the
original observations are

stored (see end of arrow).

3) The optimum parameters for
this particular bootstrap sample
are found by minimizing the
objective function.

4) The parameters, and whatever
else of interest are stored

Steps 1-4 are repeated many
times
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Bootstrap stuff is in row 240 and below

Year\Age

o XA AN AW =

—
[FST S )

[
=

0
24.22
24.50
26.39
42.52
60.78
94.98
35.57
70.11
56.14
107.74
31.88
149.14
41.10
68.13

1

67.09
31.12
37.51
43.67
63.47
94.78
146.62
51.19
100.87
86.90
147.17
46.54
173.12
60.22

2

108.35
74.00
40.91
53.07
55.51
83.96

123.48

177.46
61.81

130.37
98.77

178.33
45.01

211.95

3

38.43
101.57
82.75
48.97
56.76
61.51
91.03
123.79
176.99
65.59
121.08
97.51
141.04
45.28

Optimum predicted Catch-at-Age as values - used to create the boo

4
87.09
30.53
96.38
83.60
43.94
52.51
55.30
75.28

101.56

153.56
49.52
96.92
62.69

116.07




=| The random sampler

M | N | o | P | Q@ | R | s [ T a,yC’\.

Catch-at-age: Bootstrap sample - this will be copied into cells F3:N11 by using the macro a,y
Year\Age 0 1 2 3 4 5 6

RN AW -

Press F9 to see a new bootstrap sample. Once you get bored copy the
data and paste them into the area where the original observation data are.
Run the Solver and you have your first bootstrap. How does the result
compare with your F, SSB and R profile of your optimum sample?



7] New parameter estimates for each bootstrap sample

Optimum fit 1 bootstrap estimate
PARAMETERS PARAMETERS
Name Ln(paran$ B T Name Ln(paran$S " Parameter
Ln Afull 1.8017 6.06 Ln Afull 1.8153 6.14
LnsL 2.3535 10.52 LnsL 2.4021 11.05
LnsR 25.0000 HEH LnsR 25.7000 HiHHHHHE
LnF 1900 -0.8229 0.44 LnF 1900 -0.8012 0.45
LnF 1901 -0.8697 0.42 LnF 1901 -0.9061 0.40
LnF 1902 -0.8344 0.43 LnF 1902 -0.9013 0.41
LnF 1903 -0.9048 0.40 LnF 1903 -0.9010 0.41
LnF 1904 -0.7820 0.46 LnF 1904 -0.8386 0.43
LnF 1905 -0.7198 0.49 LnF 1905 -0.7549 0.47
LnF 1906 -0.7832 0.46 LnF 1906 -0.7474 0.47
LnF 1907 -0.7380 0.48 LnF 1907 -0.8347 0.43
LnF 190§ -0.7434 0.48 LnF 190§ -0.7046 0.49
LnF 1909 -0.6385 0.53 LnF 1909 -0.6255 0.54

LnF 1910 -0.6751 0.51 LnF 1910 -0.7053 0.49



Use a macro to run the bootstrap

Sub Do_Bootstrap ()

Do_Bootstrap Macro

' Macro recorded 23/01/2001 by Malcolm Haddon

' Modified by Einar 24/2/2004

' Note: When the Macro ends the values in "The input data"

area in the Model spreadsheet contains the last bootstap

sample. Need thus to link again the original measurements
stored in worksheet CatchAtAge and Surveyl and rerun the

optimiser (Solver).

Dim i As Integer
Application.ScreenUpdating = False

' In the next line one specifies the number of bootstrap runs

For 1 = 1 To 500

SolverOk SetCell:="objectives", MaxMinVal:=2, ValueOf:="Q0",
ByChange:="E37:E38;E40:E99;E101:E111"
SolverSolve (True)

Next 1



Graphical output
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p(F1924<F)

3| More detailed output ...
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ng The terminal information

Fishing mortality in 1924
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i The banana pattern - correlation
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Some “real” life examples



1l I. haddock - different runs

F 2002
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Relative scale

i I. haddock - bootstrap noise
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Advantages: Can address questions?

Fishing mortality (F3-7)

Is F increasing?

0.8

0.9 1.0

2500 Bootstrapps from xCAM: The results show that the 80th percentile of the fishing mortality in the year
2000 (F2000,80th=0.48) is below the 20th percentile value of the fishing mortality in 2002
(F2002,20th=0.55). This suggests that the increase in fishing mortality from 2000 to 2002 reflects very likely
a true increase in fishing mortality over the period. The analysis indicate that the most sensible value of F to
use in the assessment year is the terminal year value, not the average of the last three years.



=11 Advantages: Get rid of point estimators
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i Advantage: Relative error among stocks

Cumulative profile
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Bootstrap does not solve all
problems (or for that matter most
uncertainty estimating methods)



i Assessment uncertainties

= 1) Natural variations

= 2) Observation errors in the input data
= 3) Model misspecifications

= 4) Implementation errors

= By bootstrapping we are only estimating
the noise in the observations given the
model assumptions made.



i How to resample the residuals?

= The way one resamples the residuals gives
different bootstrap confidence profiles.

=« E.g. randomly resampling the whole age year
matrix of the survey residuals gives different
bootstrap probability profile compared with
randomly resampling a whole year block.

= This problem is in some way analogous to
how one creates error structures when
generating simulated (artificial) data.

= No clear answer here, this is a developing
field.



=11 Loss of autocorrelation

Residuals autocorrelated in the original sample, random in the bootstrap
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1.4 - [ 1.4 1| .
1.3 - I . 1.3 - [
1.2 - - 1.2 - I
= 1.1 - Fﬂ m = 1.1 -
Dl N B 1
3 0.970 }mFo LLmgo[ 100 $ 0.970 u megq 1Ho
0.8 - 0.8 -
0.7 - i 0.7 - - I
0.6 - I 0.6 - _
0.5 - 0.5 -

Year Year



50 |

Loss of structure in original residuals

= Original residuals

= Clear year effects in
the residuals from the
measured data

= Bootstrap residuals
= Loss of structure when

randomly select the

whole age year matrix

Survey 1 residuals
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=1 Loss of structure in original residuals

o _ Survey 1 residuals
= Original residuals
= Clear year effects in 3
the residuals from the
measured data ’

= Bootstrap residuals  [suveyiresicuais
Oe @ De

= Resampling the whole »| &%
year retains the year oo
factor in the residuals
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The SSE profile of the bootstrap!

Frequency of occurence
o
N
o

SSE = 226

e
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SSE values



2| Different models — different results

Spawning stock biomass

300
ADAPT model with bootstrap 250 -

confidence interval.
Red line: XSA, point estimates.

200 -
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q O

50
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1979 1984 1989 1994 1999 2004

Mean value not the same, XSA point value on the lower tail of the
distribution profile of the ADAPT bootstrap confidence interval. Both
models use the same input data — difference in results are related to
model assumption.

Sometimes the value from one model does not overlap with the
confidence distribution of another model, even when using only one
survey. This indicates that the assumptions in the model(s) have a larger
Influence on the final results than the noise in the data.



i Final point

= Bootstrap seems like the magic thing and it looks
very impressive.

« It is a helpful explorative tool

= It represent the noise in the data given the model
assumption. Thus not a true confidence profile of the
total assessment error.

= Should thus talk of “pseudo-confidence intervals” or
“bootstrap confidence interval”.

= The same rule applies with using bootstrap as
with any other tools:
» Understand how it is implemented in the particular

software package that you may be using and ask if
that is appropriate to the data set that you have.




