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Some more mathematical formulation of stock 
dynamics

2 Purpose of slides

� Introduce the basics in mathematical 
representation of population dynamics in some 
detail:
� Show how the models are all a a special form of the 
mass balance equation (Russels equation)

� Stock production models

� Cohort based models (generic length/age models)
� Describe the general pattern observed

� Derive the mathematical equation

� Source:
� Haddon 2001: Chapter 1 & 2

� Hilborn and Walters 1992: Chapter 3.4

3 Russel’s mass balance formulation

� Russels contribution:

� “.. the sole value of the exact formulation given above is that it 
distinguishes the separate factors making up gain and loss 
respectively, and is therefore an aid to clear thinking” (Russel
1931)

� Recognized that a stock could be divided into animals that were 
in the fishable stock and those that were entering the fishable 
stock at any one time (recruitment)

� Stock biomass has gains: Recruitment and growth

� Stock biomass has losses: Natural and fishing mortality (catch)

( ) ( ) ( )
next last natural

recruitment growth catch
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4 Russel’s equation: A mass balance equation

� Bt+1 = Bt + Rt + Gt - Mt - Yt

� Bt+1 stock size in weight at start of time t+1

� Bt stock size in weight at start of time t

� Rt weight of all recruits entering stock at time t

� Recruits: Young fish “entering” the stock in each time period

� Gt weight increase of fish surviving from t to t+1

� Mt weight loss of fish that died from t to t+1

� Yt weight of fish captured from t to t+1

FTP

Stock production models

6 Russel’s equation modified

� Russel’s equation for biomass:

Bt+1 = Bt + Rt + Gt - Mt - Yt

� In the absence of fishing:

Bt+1 = Bt + Rt + Gt - Mt

� The two sources of increase are called production: 

Production =  (Rt + Gt)

� Difference between production and natural mortality is called surplus
production:

Surplus production =  (Rt + Gt) - Mt

• If the processes of recruitment, growth and natural mortality are 
constant we can write the Russel equation as: 

Bt+1 = Bt + rBt

� r: intrinsic growth rate
� Here recruitment, growth and mortality are all lumped into one number

� r > 0, population will grow

� r = 0, population remains constant

� r < 0, population decreases with time
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7 Population growth curves

� Model limitations

� No population increase or decreases continuously and there 
seems to be an upper bound due to food / space limitation, 
predation, competition. This model is thus not realistic to 
describe long term population change

� Note this is an exponential model
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8 Density dependent model

� Alter the exponential model by taking into account that 
population growth rates is a function of population size:
� r’ = ro – r1B

� where ro is the population growth rate when the population size is 
small (mathematically NULL)

� r1 is a value that scale the rates with population size (B)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10

Biomass

r'

Density-indipendent

Density-dependent
r0

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Time t

B
io
m
a
s
s

9 The logistic model 1

By mathematical derivation, taking into account a linear
density dependent effect of birth and death rate, we can 
expand the exponential model:

to the following form:

� K: The carrying capacity (often written as Bmax).

� r:  The intrinsic rate of growth (r):

� is multiplied by the difference between the current population 
size and the carrying capacity (K-Bt / K).
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10 Population trajectory according to logistic model
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11 Production as a function of stock size
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12 Functional forms of surplus productions

� Classic Schaefer (logistic) form:

� The more general Pella & Tomlinson form:

� Note: when p=1 the two functional forms are the 
same

� If p <> 1, then the density dependence is no longer 
linear
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13 General form of surplus production models

The Schaefer production model is related directly 
to Russels mass-balance formulation:

Bt+1 = Bt + Rt + Gt - Mt – Yt

Bt+1 = Bt + Pt – Yt

Bt+1 = Bt + f(Bt) – Yt

� Bt+1: Biomass in the beginning of year t+1 (or end of t)

� Bt: Biomass in the beginning of year t

� Pt: Surplus production

� the difference between production (recruitment + growth) and natural 
mortality

� f(Bt): Surplus production as a function of biomass in the start of the 
year t

� Yt: Biomass (yield) caught during year t

14 Production model: The model and data needs

� Need a time series of:

� Total annual catch (Yt)

� Index of abundance (CPUEt)

� This index is most often obtained from data collected on the 
total effort in the commercial fisheries.

� In rare cases independent scientific surveys are used in such 
analysis.
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15 The data and the results

0

10
20
30

40
50
60
70

1960 1970 1980 1990 2000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1960 1970 1980 1990 2000

� The data needed:
� Catch

� Index of abundance

� The results:
� Get an estimate of MSY

� Get an estimate of Fmsy

� Current stock status and 
fishing mortality

� The issue:
� Is the model and are the 

estimates a true reflection 
of the population?

� Are the data informative?

Catch

Abundance index

The reference points from a 
production model

BMSY = K/2

FMSY = r/2

MSY = FMSY * BMSY = r/2 * K/2 = rK/4

EMSY = FMSY/q = (r/2)/q = r/(2q)

Ft = Ct/Bt

FTP

… just some word of caution

18 Model uncertainties: The true shape of the production
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19 Model uncertainties: The cpue-biomass relationship
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20 Model uncertainties

� The assumption of stock production (and age 
based recruitment) models is that:

� The carrying capacity (K), the production (r) and the 
MSY is on average constant over a long period of time

� This assumption is highly debated at present, particularly in 
relation climatic and anthropogenic changes

� A paradox:

� It is sometimes argued that the longer the time series of data 
available (catch and cpue) the better the model estimates.

� However, since K and r are likely changing over long time spans 
the problems of the model assumption of constant r and K is 
more likely to become violated when we use long time series

� But short time series do not enough information to obtain the 
parameter estimates

25 Some other draw back of production models

� The population is treated as a “lump”:

� Input

� Total catch by weight

� Catch per unit effort

� Output

� Total biomass estimates

� We know however that:

� Fish grow in size with time, and thus pass through a multitude of 
life history stages

� Larval

� Juvenile

� Adult

� The number of fish must by nature reduce with time after birth

� The size composition of the fisheries may change with time

FTP

Size/age based models

(cohort models)

27 Development of an cohort
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28 Cod: Length composition in survey, march 2002
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31 Cod: Length and age composition in survey, march 2002
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32 Cod: Cohort change in length with age
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33 Haddock: Annual catch - 1985-2004
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Annual catch range: 20-55 million fishes

34 Catch in numbers - 1985-2004 (millions)

Year Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Total

85 0 2 5 6 1 2 3 2 20

86 0 4 4 5 6 1 1 1 21

87 2 8 8 3 2 1 0 0 24

88 0 10 16 6 1 1 1 0 35

89 0 3 23 10 3 1 1 0 40

90 0 3 8 24 7 1 0 0 43

91 3 1 4 7 14 3 0 0 32

92 3 7 4 4 4 6 1 0 30

93 0 12 13 3 2 2 2 0 34

94 0 3 27 11 2 1 0 1 45

95 2 6 6 23 6 1 0 0 45

96 2 9 7 5 14 2 0 0 39

97 1 4 11 5 3 5 1 0 29

98 0 8 6 8 2 2 2 0 29

99 1 2 17 5 5 1 1 1 31

00 2 7 2 14 2 2 0 0 30

01 2 11 7 2 6 1 1 0 30

02 1 11 16 5 1 3 0 0 38

03 0 6 16 13 3 1 1 0 41

04 1 4 18 19 9 2 1 1 55
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35 Catch by yearclasses

9

8

7

6

5

3

2

4

987
6

5
4

3
2 9

8

7

6

5

3

2

4

0

5

10

15

20

25

30

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

C
a
tc
h
 (
m
il
li
o
n
s
)

Year class
1985

1988
1990

Note exponential decline in catches of older fish

36 Catch by yearclasses on a log scale
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38 Proportional catch of different year classes by age
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39 Pattern observed

� The pattern observed in the catches:

� Often have multiple cohorts in the fisheries at any 
given time

� The contribution of different cohorts to the catches is 
quite variable

� Variable year class size

� Initial increase in numbers with size/age

� Decline in numbers with size and age

� How do we extract information on the population 
and exploitation from such data?

� Use mathematical models
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42 Russel equation modified 1

� Russel equation for biomass:

Bt+1 = Bt + Rt + Gt - Mt - Yt

� Russel equation for numbers:

Nt+1 = Nt + Rt - Dt - Ct

� Nt+1 stock size in numbers at start of time t+1

� Nt stock size in numbers at start of time t

� Rt number of recruits entering the stock at time t

� Dt number of fish that died from t to t+1

� Ct number of fish that are caught from t to t+1

� What happened to the growth term??

43 Russel equation modified 2

� Russel equation for numbers:

Nt+1 = Nt + Rt - Dt - Ct

� If we are considering ONE cohort only we can drop the 
recruitment term and have

Nt+1 = Nt - Dt – Ct

� If we assume that the total number dying (Dt+ Ct) are a 
proportion of those living we have:

Nt+1 = Nt - mNt= Nt (1 – m) = sNt

� m: proportion of fish that die during time interval t to t+1

� s: proportion of fish that survive during time interval t to t+1

� s+m = 1

Numbers alive Number alive Numbers dying Catch

at the beginning at the beginning naturally this

of next time period of this time period this period period

       
       

= − −
       
       
       

44 Russel equation modified 3

� The equation:

Nt+1 = Nt (1 – m) = Nt s

is an exponential model and the discrete version is:

i.e. a negative exponential model

m & s: proportional coefficients (never bigger 
than one)

Z: instantaneous coefficient (can be bigger than 
one)

t+1
N tZ

t
N e

−
=
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47 Cohort stock equation for each year

� Since mortality is not constant through out 
a cohorts life we work in smaller time 
steps:

� Nt: Number of fish at age time t

� Nt+1: Number of fish at time t+1

� Zt: instantaneous mortality coefficient over time 
period t to t+1

1
tZ

t t
N N e

−

+
=

48 Separation of fishing and natural mortality

� Since we are often interested in separating
natural and fishing mortality we write:

� Mt: natural mortality at time t

� Ft: fishing mortality at time t

� We will refer to this equation as the stock equation.

( )
1

t tM F

t t
N N e

− +

+
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49 The effect of fishing
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= 50 Describing the catch 1

� The number of fish that die in each time interval
is:

� Substituting with the stock equation we get:

1t t t
D N N

+
= −

( )

( )( )1

t t

t t

M F

t t t

M F

t

D N N e

N e

− +

− +

= −

= −

Numer of Number of
Proportion of

fish that die fish alive in
fish that die

during the time the beginning

   
    

=         
   

51 Describing the catch 2

� The number that die due to fishing mortality is 
the fraction (Ft/Zt) of the number of fish that die, 
i.e.

� Ct: The number of fish caught over time t to t+1

( )( )1 t tF Mt
t t

t t

F
C e N

F M

− +
= −

+

Numer of Proportion of Number of
Proportion of

fish fished fish that die fish alive in
fish that die

during the time due to fishing the beginning

     
      

=             
     

52 Describing the catch 3

� It can be shown that if we take the average* population 
size of the period t to t+1 (Nbar) the catch equation 
becomes:

� The form of the stock equation is then however more complex

� Where Ti is the time between t and ti (often 1 year)

* More precisely: the integral

t t t
C F N=

1 i tZ T

t i

i i

e
N N

Z T

− −
=  

 

54 Cohort analysis: Minimum measurements needed

� Used to estimate mortality (Z, F) and abundance 
(N)

� Mortality (Z) can be estimated from both age and 
relative size frequency samples

� survey or catch data by length

� length based samples: Need to know growth (K and Linf)

� For fishing mortality (F) we need to know M

� F = Z – M

� For abundance (N) we also need the total catch 
removed

55 Age/size structured models

� Advantages

� Populations do have age/size structure

� Basic biological processes are age/size specific
� Growth

� Mortality

� Fecundity

� The process of fishing is age/size specific

� Relatively simple to construct mathematically

� Model assumption not as strict as in e.g. logistic models

� Disadvantages

� Sample intensive

� Data often not available

� Mostly limited to areas where species diversity is low

� Have to have knowledge of natural mortality

� For long term management strategies have to make model assumptions 
about the relationship between stock and recruitment

� Often not needed to address the question at hand


